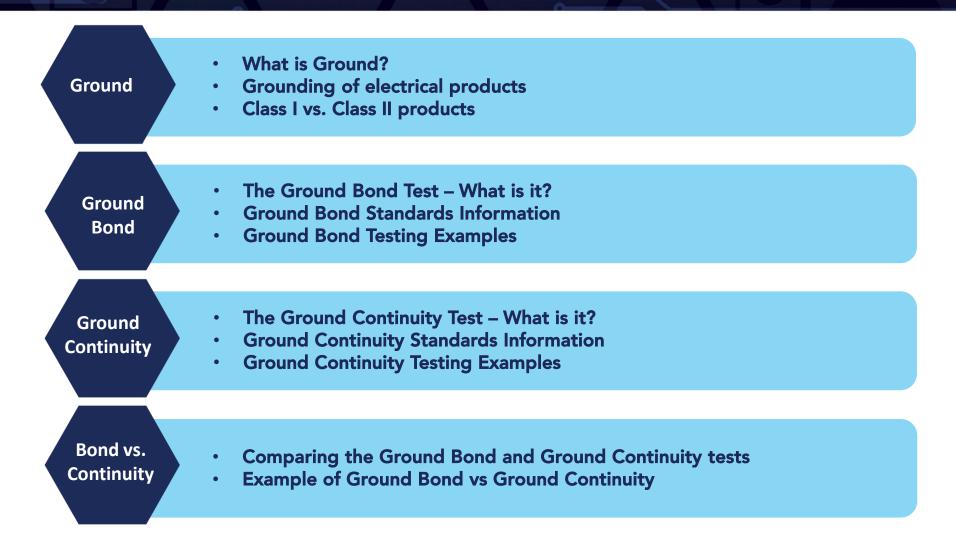


Testing the Ground Circuit

- Ground of electrical products
- Class I vs. Class II products
- Ground Continuity Test
- Ground Bond Test
- What is tested during each test

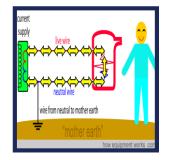
Meet Our Team


Please use the Q & A utility to ask us any questions concerning the material being presented.

You can find a recording of this webinar and presentation on our Webinar Archive page, https://www.arisafety.com/webinars/archived-webinars/

Please contact Brittany Socha – on the chat line or email <u>Brittany.socha@ikonixusa.com</u> if you have any connection issues.

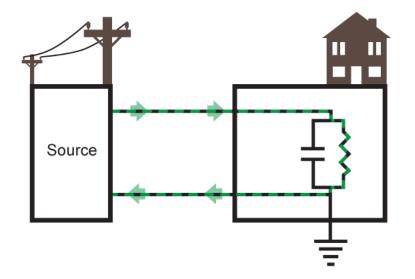
Ground Bond & Ground Continuity Testing Learning Objectives

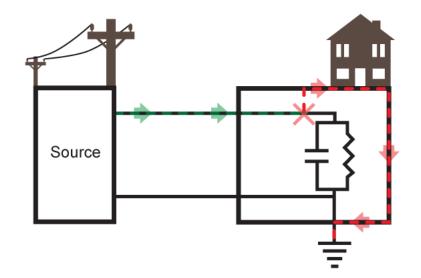


What is Ground?

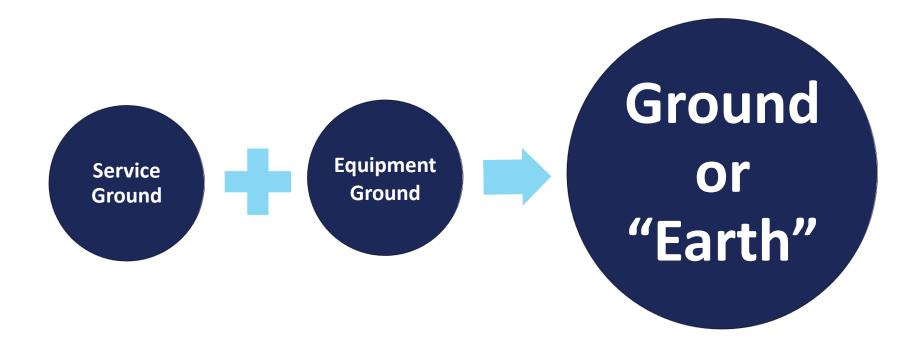
Reference point for an electrical circuit

Second line of defense against electrical shock¹


Common return path for electrical current²


Ground or "earth" can have numerous functions and meanings. The main purpose of a ground is to reduce the risk of electrical shock.

1 – http://en.wikipedia.org/wiki/Ground_%28electricity%29#mediaviewer/File:HomeEarthRodAustralia1.jpg 2 - http://www.howequipmentworks.com/physics/electricity/elec_safety/electrical_safety.html


Modern Power Distribution

Different Functions of Ground

System or Service ground – designed to protect machines, tools and insulation. **Equipment Ground** – Designed to protect operator from electrical shock hazards.

Class I vs. Class II Electrical Products

Electrical products can be classified according to insulation type Class I Products • Terminate in 3 prong line cord (line, neutral and ground). • Ground prong connects to product chassis. • Safety through basic insulation and proper grounding.

Double insulated products.

- Terminate in 2 prong line cord (line and neutral).
- Safety through dual layer of insulation.

Class I products provide electrical protection by employing basic insulation and a grounded chassis. Class II products employ a double layer of insulation so a grounded chassis is not necessary.

Class II Products

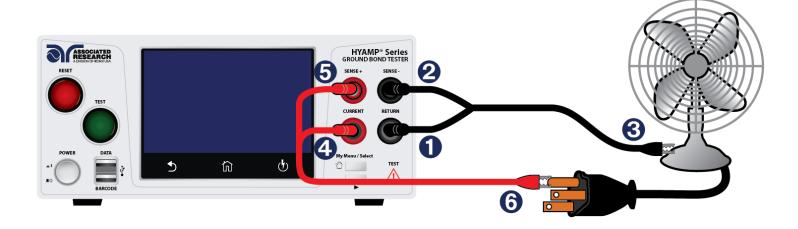
What is Good Ground?

National Electrical Code	 NFPA 70 Protect people and property from electrical hazards
NEC 250-45	 "Any exposed non-current carrying metal parts of cord & plug connected equipment which may become energized shall be grounded."
NEC 250-51	 Permanent and Continuous Capacity to conduct fault current Low impedance to limit voltage to ground.

NFPA (National Fire Protection Agency) stipulates the NEC which is adopted in all 50 U.S. States. The NEC gives requirements for grounding products and installations. The NEC defines a "good" ground.

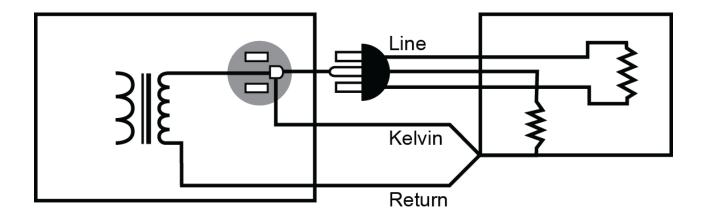
Ground Bond and Continuity Tests

Purpose	 Ground Bond and Ground Continuity tests are designed to "check" the ground connection on a product or system. How you ensure you have a proper ground.
Method	 Apply a current to the ground point of a product or system. Measure potential drop across the ground circuit and calculate the circuit resistance.
Testing	 Permanent and Continuous Capacity to conduct fault current Low impedance to limit voltage to ground.

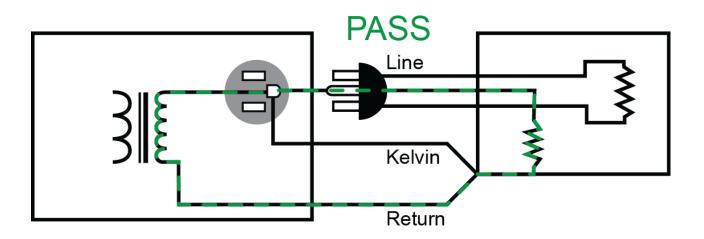

These two types of tests are used to prove and verify that there is a low impedance path to the ground for electrical products and systems. This ensures proper grounding.

Quiz Question

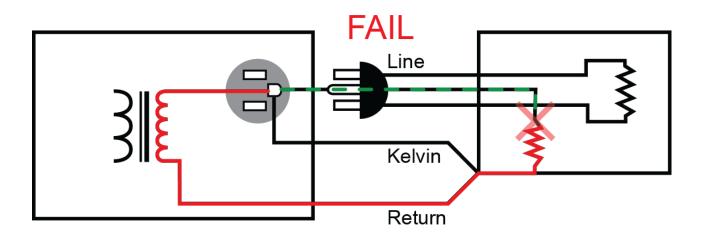
Which of the following best represents the result of a ground Bond test?


The Ground Bond Test

Associated Research HYAMP connected to a DUT (Device Under Test)



Ground Bond Testing



Ground Bond Testing

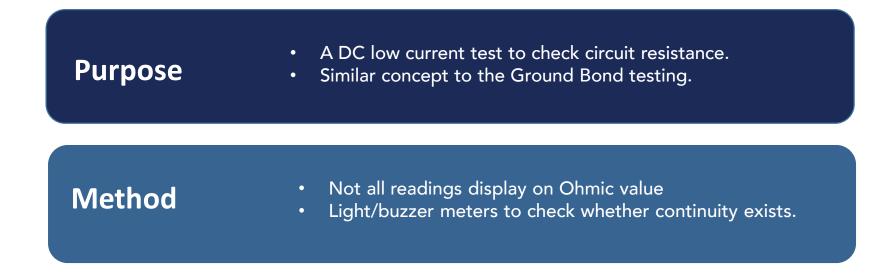
Ground Bond Testing

IEC/UL 60601-1 3rd Edition

8.6.4 Impedance and Current Carrying Capability (AC Ground Bond Test)		
REQUIREMENT	PASS CRITERIA	
Current = 25 A OR 1.5 * highest rated current (whichever is greater $\pm 10\%$) passed through protective earthing circuit. Frequency = 50 or 60 Hz, no load voltage $\leq 6 V$	Impedance protective earthing circuit on the DUT \leq 100 m Ω For DUTs with non-detachable supply cord, impedance for DUT \leq 200 m Ω	

UL 1598/CSA C22.2 No. 250.0-08 3rd Edition Luminaires

17.2 Bonding Circuit Impedance (Ground Bond Test)	
REQUIREMENT	PASS CRITERIA
Test current = 30 A passed between earthing contact point and accessible conductive parts No load voltage ≤ 12 V AC or DC Test time = 60 - 120 sec (Refer to clause 17.2.4)	Impedance protective earthing circuit on the DUT \leq 100 m Ω



IEC/UL 60335-1 5th Edition

27.5 Provision for Earthing Test (AC Ground Bond Test)	
REQUIREMENT	PASS CRITERIA
Current = 25 A OR 1.5 * highest rated current (whichever is greater) passed through protective earthing circuit. No load voltage ≤12 V AC or DC	Impedance protective earthing circuit on the DUT \leq 100 m Ω

Ground Continuity Testing

Ground Continuity testing is the same concept as Ground Bond testing. You're simply checking for a continuous path on a ground circuit. However, there are key differences between these two tests.

IEC/UL 61010-1 3rd Edition

Annex F - Routine Tests	
THE CONTINUITY TEST	THE HIPOT TEST
A continuity test to be run on the protective earth circuit No current value specified. Simple continuity test to show existence of protective earth circuit	Test voltage - Refer to Table F.1 No flashover or breakdown on product insulation

IEC/UL 60335-1 5th Edition

Annex A (Routine Tests)	
ROUTINE GROUND BOND	ROUTINE HIPOT
Test Current = 10 A No load voltage \leq 12 V AC or DC Impedance of earthing conductor for cord connected equipment \leq 200 m Ω Impedance for all other appliances \leq 100 m Ω	Test voltage - Refer to Table A.1 Leakage current limit ≤ 5 mA Leakage current limit for high leakage appliances ≤ 30mA

Ground Continuity Test	Ground Bond Test
 Verifies the existence of a ground connection 	 Verifies the integrity of a ground connection
• Readings generally given in Ω s	• Readings generally given in m Ω
 The test is quick to set up and easy to perform 	 Provides more valuable safety information about DUT
 Usually used as an extra feature during the Hipot test. 	 Can be combined with a Hipot test for a more complete safety testing system.

The Ground Bond test is more stringent than the Ground Continuity test.

Example: 64 strand wire with all but one strand connected.

Example: 64 strand wire with all but one strand connected. A ground continuity test would pass this wire because the instrument reads a continuous path.

Example: A Ground Bond test load the wire with high current. This would "burn up" the connection and cause a FAIL.

Poll Question BINAR

When are you performing the Ground Bond test on your product?

Video Demonstration

SEMINAR

WEBINAR

Educational Resources

Visit us online to view all of our Educational Resources <u>arisafety.com/support/educational-resources/</u>

Our Next Webinar is

An Introduction to Power Sources (APT)

Wednesday, September 12 at 10AM CST (GMT – 6:00)

Click the link in chat box to learn more

11

Nobody Understands Electrical Safety Testing Better Than We Do.

SAFETY

Safe Workstations. Safe Products. Safe Customers. Conform to OSHA.

EDUCATION

Educate your operators on best practice.

PRODUCTIVITY

We'll help you improve throughput on your production line.

Ready to Improve Your Production Line?

Visit ikonixusa.com/consulting Contact applications@ikonixusa.com

Custom packages available to meet your needs.

Contact Us

You can find a recording of this webinar and presentation on our Webinar Archive page, <u>https://www.arisafety.com/webinars/archived-webinars/</u>

Check out our website for more information arisafety.com

For any questions about our webinars send an email to Brittany at brittany.socha@ikonixusa.com